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__________________________________________________________________________________________ 

Abstract 

Predicting the rate of concentration and migration of arsenic at various formations were methods of monitoring 

and evaluation of arsenic concentration in the study area. The rate of pollution from arsenic deposition has cause 

lots of unhealthy environmental conditions polluting soil and water environments. Such situation has generated 

lots of ill health generating and numerous deaths; the investigation was carried out previously, but could not 

provide any better solution, several recorded ill health  calls for serious concern, thorough investigation on 

comprehensive level were carried out, predominant arsenic was discovered, homogeneous void ratio were 

confirmed  to predominantly deposit in the study area.  The rate of concentration were represented graphically 

expressing rapid increase of arsenic in all the figures, this conditions implies that homogeneous void ratio 

percentage are very high where the micropores deposited through the level of disintegration from the porous 

predominant  deposited porous rocks in the deltaic formations. Predictive model from expressed equation were 

generated and resolved, it produces theoretical values, the data were compared with experimental values, both 

parameters compared faviourably well expressing model validation for the study environment  
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The soil surface is subjected to vast inputs of energy from rainfall, runoff, wind, and solar radiation as well as a 

wide range of human and biotic inputs. Some of this energy is intercepted and absorbed by plants that use solar 

energy, soil nutrients, and atmospheric carbon for photosynthesis. By contrast with plants, soil is incapable of 

absorbing the large energy ¯uxes in a constructive manner and when the soil surface is exposed, the results can 

be highly degrading. Particularly in the case of energy from rainfall and runo€ causing water erosion, the 

operative processes are destructive, both to soil structure, and to its capacity to sustain biomass growth (Lal, 

1998 Starr et al 2000). Rainfall impact and the shearing forces of runo€ disintegrate soil aggregates (Yoder, 

1936; Le Bissonnais and Arrouays, 1997) and transport fertile topsoil along with plant nutrients and organic 

matter away from eroded soil landscapes (Rogers, 1941; Massey and Jackson, 1952; Lal, 1980; Zobish, et al., 

1995 Starr et al 2000). Some of the soil, nutrients, and organic carbon are redistributed across the landscape and 

some are transferred to aquatic ecosystems (Lal, 1995; Stallard, 1998), where they contribute to eutrophication 

(Vezjak, et al., 1998; Frielinghaus and Vahrson, 1998), anoxia (Vezjak, et al., 1998), turbidity (Wass, et al., 

1997; Riley, 1998), greenhouse gas emissions (Lal, 1995), and general water quality degradation before a part of 

them are eventually stored in sediments. The role of soil organic carbon (SOC) in stabilizing aggregates (Tisdall 

and Oades, 1982; Elliott, 1986; Kay, 1998) and thereby reducing the susceptibility to erosion (Yoder, 1936; 

Piccolo, et al., 1997) is fairly well established. Improved aggregate stability is but one of the many positive 

aspects of sequestering carbon in soil that also include reduced greenhouse gasses in the atmosphere and 

improved soil quality (Lal, 1997). These qualities have led to serious consideration of managing arable lands for 

soil carbon sequestration (Sharpenseel, 1997; Lal, et al., 1998a, b). Given the intense interest of both scientists 

and policy makers in SOC sequestration, it is important to improve the cursory and qualitative understanding of 

the principal factors and processes that affect its rate and magnitude within soil and terrestrial/aquatic 

ecosystems. An example of such a process with poorly understood implications for the pools and ¯uxes of 

carbon is accelerated soil erosion Starr et al 2000. 

2. Materials and method  

Soil samples from several different borehole locations, were collected at intervals of two and three metres each 

(2- 3m). Soil sample were collected in five different locations, applying insitu method of sample collection, the 

soil sample were collect for analysis, standard laboratory analysis were collected to determine the  rate  of 

deposition  at various  formation, the result were analyzed to determine the rate of arsenic 

 

concentration  

between the  unconfined bed   through column experiment in the study area. 

3. Results and Discussion  

Results and discussion from the expressed figures through the theoretical generated values are presented in 

tables and figures, the expression explain the rate of concentration through graphical representation for every 

condition assessed in the developed model equations. 

Table: 1 Comparison of predictive and experimental values of Arsenic at Different Depths 

Depths [M] Predictive Values   Experimental values   

3 11.43 12.66 
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6 23.94 24.44 

9 36.45 34.66 

12 48.97 49.88 

15 61.48 60.99 

18 73.99 73.88 

21 86.5 86.88 

24 99.02 98.34 

27 111.52 112.21 

30 124.04 123.67 

 

Table: 2 Comparison of predictive and experimental values of Arsenic at Different Time 

Time [Per Day] Predictive Values   Experimental values   

10 12.42 12.66 

20 23.93 24.44 

30 36.41 34.66 

40 48.96 49.88 

50 61.46 60.99 

60 73.97 73.88 

70 86.49 86.88 

80 98.99 98.34 

90 111.51 112.21 

100 124.01 123.67 

 

Table: 3 Comparison of predictive and experimental values of Arsenic at Different Depths 

Depths [M] Predictive Values   Experimental values   

3 11.69 12.66 

6 23.83 24.44 

9 36.61 34.66 

12 49.07 49.88 

15 61.53 60.99 

18 73.99 73.88 

21 86.44 86.88 

24 98.91 98.34 

27 113.36 112.21 

30 123.82 123.67 

 

Table: 4 Comparison of predictive and experimental values of Arsenic at Different Time 

Time [Per Day] Predictive Values   Experimental values   
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10 11.68 12.66 

20 24.13 24.44 

30 36.58 34.66 

40 49.03 49.88 

50 61.48 60.99 

60 73.93 73.88 

70 86.38 86.88 

80 102.23 98.34 

90 115.03 112.21 

100 127.83 123.67 

 

Table: 5 Comparison of predictive and experimental values of Arsenic at Different Time 

Time [Per Day] Predictive Values   Experimental values   

10 12.63 12.66 

20 25.43 24.44 

30 38.23 34.66 

40 51.03 49.88 

50 63.83 60.99 

60 76.63 73.88 

70 89.43 86.88 

80 102.23 98.34 

90 115.03 112.21 

100 127.83 123.67 

 

Table: 6 Comparison of predictive and experimental values of Arsenic at Different Depths 

Depths [M] Predictive Values   Experimental values   

2 2.31 2.22 

4 4.85 4.88 

6 7.39 7.55 

8 9.93 9.44 

10 12.47 12.66 

12 15.01 14.45 

14 17.55 17.66 

16 20.09 21.11 

18 22.63 22.66 

20 25.17 25.88 

 

Table: 7 Comparison of predictive and experimental values of Arsenic at Different Depths 
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Time Per Day Predictive Values   Experimental values   

2 2.31 2.22 

4 4.85 4.88 

6 7.39 7.55 

8 9.93 9.44 

10 12.47 12.66 

12 15.01 14.45 

14 17.55 17.66 

16 20.09 21.11 

18 22.63 22.66 

20 25.17 25.88 

 

Table: 8 Comparison of predictive and experimental values of Arsenic at Different Depths 

Depths [M] Predictive Values   Experimental values   

2 2.11 2.40E+00 

4 4.73 4.98E+00 

6 7.35 7.47E+00 

8 9.96 9.96E+00 

10 12.58 1.25E+01 

12 15.19 1.49E+01 

14 17.81 1.74E+01 

16 20.04 2.24E+01 

18 23.04 2.24E+01 

20 25.66 2.61E+01 

 

 

Figure 1: Comparison of predictive and experimental values of Arsenic at Different Depths 
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Figure 2: Comparison of predictive and experimental values of Arsenic at Different Time 

 

Figure 3: Comparison of predictive and experimental values of Arsenic at Different Depths 
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Figure 4: Comparison of predictive and experimental values of Arsenic at Different Time 
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Figure 5: Comparison of predictive and experimental values of Arsenic at Different Depths 

 

Figure 6: Comparison of predictive and experimental values of Arsenic at Different Depths 

 

Figure 7: Comparison of predictive and experimental values of Arsenic at Different Time 
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Figure 8: Comparison of predictive and experimental values of Arsenic at Different depths  
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solution that will prevent the spread of the contaminants, such condition call for serious concern, since the 

contaminants are rapidly increasing in the study environment, these factors call for thorough investigation that 

were able to intensively study the rate of deposition and migration of these contaminants, the study generate 

results on the rates of concentration at different time and depths, the values produced model equations that were 

thoroughly expressed to produced theoretical values  for  several locations, to validated the developed model, 

comparison with other experimental values was found necessary, both parameters were compared,   and it 

provides faviourable fits, these conditions implies that the expressed model equation can be applied for model 

prediction in the study environments, experts will definitely fine faviour  by using this conceptual tools for 

predicting arsenic concentration in the study area.   
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